一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 集合,,则( )
A. B. C. D.
【答案】A
【解析】
【分析】根据集合的定义先算出具体含有的元素,然后根据交集的定义计算.
【详解】依题意得,对于集合中元素,满足,
则可能的取值为,即,
于是.
故选:A
2. 设,则( )
A. B. 1 C. -1 D. 2
【答案】D
【解析】
【分析】先根据共轭复数的定义写出,然后根据复数的乘法计算.
【详解】依题意得,,故.
故选:D
3. 若实数满足约束条件,则的最小值为( )
A. B. C. D.
【答案】D
【解析】
【分析】画出可行域后,利用的几何意义计算即可得.
【详解】实数满足,作出可行域如图:
由可得,
即的几何意义为的截距的,
则该直线截距取最大值时,有最小值,
此时直线过点,
联立,解得,即,
则.
故选:D.