专题18 计数原理(理科专用)-(2020-2022)高考数学真题分项汇编(全国通用)

2025-01-19 19:18 来源: 文化之窗 本文影响了:529人

1.【2022年新高考2卷】有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有(       

A12 B24 C36 D48

【答案】B

【解析】

【分析】

利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解

【详解】

因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:种不同的排列方式,

故选:B

2.【2021年乙卷理科】将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有(       

A60 B120 C240 D480

【答案】C

【解析】

【分析】

先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.

【详解】

根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,

故选:C.

请选择下载
相关下载
各年级视频辅导入口